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The problem of telling isotopic knots apart is computationally very hard.

K is isotopic to K ′ =⇒ ⟨K⟩ = ⟨K ′⟩
We can use invariants to get approximations to this problem
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Polynomials give a nice list of invariants

Theorem (Vertigan, Kuperberg):Computing (or even well-approximating) the Jones polynomial at somevalues of t is #P-hard.

Vt = ( ) = 1
Vt = ( ) = t + t3 − t4

Vt = ( ) = 1
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|⟨0⊗n|C |0⊗n⟩|2 ≈ |Vt(L)|2/|t1/2 + t−1/2|4n
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We call a set of quantum gates G universal if every matrix U ∈ PU(4) can be
approximated up to any error ε using it.

CNOTH π/8UNIVERSAL SET 1 TOFFOLIUNIVERSAL SET 2

HX
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Solovay-Kitaev TheoremLet G = {G1, . . . , Gg, G−11 , . . . , G−1
g } be a finite set of matrix generators such that ⟨G⟩is dense in PU(4). Then

G is universal;any 2-qubit operation can be approximated using O(log1.44...(1/ε)) many gates.
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Solovay-Kitaev TheoremLet G = {G1, . . . , Gg, G−11 , . . . , G−1
g } be a finite set of matrix generators such that ⟨G⟩is dense in PU(4). Then

G is universal;any 2-qubit operation can be approximated using O(log1.44...(1/ε)) many gates.
H⊗n U H⊗n H⊗n2|0⊗n⟩⟨0⊗n| − I

repeat O(√N) timesBy changing the gates to G, we need only O(√N logc(N/ε)) gates for an error of atmost ε instead of O(N/ε) =CLASSICAL TIME.
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Let us consider the braids of n strands, Bn

We can consider the composition of braids
◦ = =
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The n braid group Bn has
identity
generators σ1, σ2, . . . , σn−1

inverses
Every knot can be obtained by closing braids

b ∈ Bn

=
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The (unitary) Jones representations of the braid groups Bn at value t arehomomorphisms ρn,t : Bn → PU(n′)
ρn,t

( ) = U
If we vectorize the closure

7→ ⟨0| ∈ (Cn′)∗ 7→ |0⟩ ∈ Cn′

we have Jones polynomials at t (up to a factor)
Vn,t

( ) = 1
−(t1/2+t−1/2)tc⟨0|U|0⟩
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Theorem (Freedman, Larsen, Wang):When t is certain roots of the unity, ρn,t(Bn) is dense in PU(n′) for all n ≥ 4.

1. Represent C2 with a basis
|0⟩ 7→ 1

t1/2+t−1/2 |1⟩ 7→ 1√(t+1+t−1)(t1/2+t−1/2) + 1√(t+1+t−1)(t1/2)

Given a circuit C = U1 ◦ · · · ◦ Um on n qubits, we can find a knot whose Jonespolynomial is ε-close to ⟨0⊗n|C |0⊗n⟩.
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2. Apply Solovay-Kitaev to represent each gate of the circuit with ρ4n,t(σi)
U1 U2

U3
ρ12,t(σ1σ4σ−17 ) ρ12,t(σ5) ρ12,t(σ−111 σ10)Solovay-Kitaev’s output

q0
q1
q2
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Theorem (Aaronson):A good approximation of |⟨0⊗n|C |0⊗n⟩|2 is #P-hard.Consider a logic term with free variables
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P NPBQP #P



Merci!


