Topological Quantum Computing What gives?

Henrique Ennes CEMRACS 2025 05/08/2025

Knots are embeddings of the circle in \mathbb{R}^3 .

Knots are embeddings of the circle in \mathbb{R}^3 .

Two knots will be called *isotopic* if we can bring one to the other without tearing them apart.

The problem of telling isotopic knots apart is computationally very hard.

STATUS

$$NP \cap coNP$$

DECIDABLE

The problem of telling isotopic knots apart is computationally very hard.

PROBLEM

STATUS

$$NP \cap coNP$$

DECIDABLE

We can use **invariants** to get approximations to this problem K is isotopic to $K' \Longrightarrow \langle K \rangle = \langle K' \rangle$

Polynomials give a nice list of invariants

$$V_t = \left(\bigcirc \right) = 1$$
 $V_t = \left(\bigcirc \right) = 1$

$$V_t = \left(\begin{array}{c} \\ \\ \end{array} \right) = t + t^3 - t^4$$

Polynomials give a nice list of invariants

$$V_t = \left(\bigcirc \right) = 1 \qquad V_t = \left(\bigcirc \right) = 1$$

$$V_t = \left(\begin{array}{c} \\ \\ \\ \end{array} \right) = t + t^3 - t^4$$

Theorem (Vertigan, Kuperberg):

Computing (or even well-approximating) the Jones polynomial at some values of t is #P-hard.

And where is quantum?

And where is quantum?

$$|\langle 0^{\otimes n} | C | 0^{\otimes n} \rangle|^2 \approx |V_t(L)|^2 / |t^{1/2} + t^{-1/2}|^{4n}$$

We call a set of classical gates \mathcal{G} universal if every Boolean function can be written using it.

We call a set of classical gates \mathcal{G} universal if every Boolean function can be written using it.

We call a set of quantum gates G universal if every matrix $U \in PU(4)$ can be approximated up to any error ϵ using it.

Solovay-Kitaev Theorem

Let $\mathcal{G} = \{G_1, \ldots, G_g, G_1^{-1}, \ldots, G_g^{-1}\}$ be a finite set of matrix generators such that $\langle \mathcal{G} \rangle$ is dense in PU(4). Then

- $\bullet \mathcal{G}$ is universal;
- any 2-qubit operation can be approximated using $O(\log^{1.44...}(1/\epsilon))$ many gates.

Solovay-Kitaev Theorem

Let $\mathcal{G} = \{G_1, \ldots, G_g, G_1^{-1}, \ldots, G_g^{-1}\}$ be a finite set of matrix generators such that $\langle \mathcal{G} \rangle$ is dense in PU(4). Then

- \bullet \mathcal{G} is universal;
- any 2-qubit operation can be approximated using $O(\log^{1.44...}(1/\epsilon))$ many gates.

By changing the gates to \mathcal{G} , we need only $O(\sqrt{N}\log^c(N/\epsilon))$ gates for an error of at most ϵ instead of $O(N/\epsilon)$ =CLASSICAL TIME.

Let us consider the **braids** of n strands, B_n

Let us consider the **braids** of n strands, B_n

We can consider the composition of braids

The n braid group B_n has

• generators σ_1 , σ_2 , ..., σ_{n-1}

inverses

The n braid group B_n has

• generators σ_1 , σ_2 , ..., σ_{n-1}

inverses

Every knot can be obtained by closing braids

$$b \in B_n$$

The (unitary) Jones representations of the braid groups B_n at value t are homomorphisms $\rho_{n,t}:B_n\to {\sf PU}(n')$

$$\rho_{n,t}\left(\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array}\right)=U$$

The (unitary) Jones representations of the braid groups B_n at value t are homomorphisms $\rho_{n,t}:B_n\to {\sf PU}(n')$

$$\rho_{n,t}\left(\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \end{array}\right) = U$$

If we vectorize the closure

The (unitary) Jones representations of the braid groups B_n at value t are homomorphisms $\rho_{n,t}:B_n\to {\sf PU}(n')$

$$\rho_{n,t}\left(\begin{array}{c} \bullet \\ \bullet \\ \bullet \end{array}\right) = U$$

If we vectorize the closure

$$\begin{array}{c} \longrightarrow \langle 0 | \in (\mathbb{C}^{n'})^* \\ \longrightarrow | 0 \rangle \in \mathbb{C}^{n'} \end{array}$$

we have Jones polynomials at t (up to a factor)

$$V_{n,t} \left(\begin{array}{c} \\ \\ \\ \end{array} \right) = \frac{1}{-(t^{1/2} + t^{-1/2})t^c} \langle 0|U|0 \rangle$$

Theorem (Freedman, Larsen, Wang):

When t is certain roots of the unity, $\rho_{n,t}(B_n)$ is dense in PU(n') for all $n \ge 4$.

Theorem (Freedman, Larsen, Wang):

When t is certain roots of the unity, $\rho_{n,t}(B_n)$ is dense in PU(n') for all $n \ge 4$.

Given a circuit $C = U_1 \circ \cdots \circ U_m$ on n qubits, we can find a knot whose Jones polynomial is ϵ -close to $\langle 0^{\otimes n} | C | 0^{\otimes n} \rangle$.

Theorem (Freedman, Larsen, Wang):

When t is certain roots of the unity, $\rho_{n,t}(B_n)$ is dense in PU(n') for all $n \ge 4$.

Given a circuit $C = U_1 \circ \cdots \circ U_m$ on n qubits, we can find a knot whose Jones polynomial is ϵ -close to $\langle 0^{\otimes n} | C | 0^{\otimes n} \rangle$.

1. Represent \mathbb{C}^2 with a basis

$$|0\rangle \mapsto \frac{1}{t^{1/2} + t^{-1/2}} | \stackrel{\bullet}{\longrightarrow} |1\rangle \mapsto \frac{1}{\sqrt{(t+1+t^{-1})}(t^{1/2} + t^{-1/2})} | \stackrel{\bullet}{\longrightarrow} + \frac{1}{\sqrt{(t+1+t^{-1})}(t^{1/2})} | \stackrel{\bullet}{\longrightarrow} |$$

2. Apply Solovay-Kitaev to represent each gate of the circuit with $\rho_{4n,t}(\sigma_i)$

2. Apply Solovay-Kitaev to represent each gate of the circuit with $\rho_{4n,t}(\sigma_i)$

3. Find the braid given by the σ_i

2. Apply Solovay-Kitaev to represent each gate of the circuit with $\rho_{4n,t}(\sigma_i)$

3. Find the braid given by the σ_i

$$egin{array}{c} q_0 \ \hline q_1 \ \hline q_2 \ \hline \end{array}$$

4. $|\langle 0^{\otimes n} | C | 0^{\otimes n} \rangle|^2 \approx C |V_t(L)|^2$

2. Apply Solovay-Kitaev to represent each gate of the circuit with $\rho_{4n,t}(\sigma_i)$

3. Find the braid given by the σ_i

4. $|\langle 0^{\otimes n} | C | 0^{\otimes n} \rangle|^2 \approx C |V_t(L)|^2$

Anyons are (quasi) particles whose behavior are very tied to Jones polynomials.

Anyons are (quasi) particles whose behavior are very tied to Jones polynomials.

Theorem (Aaronson):

A good approximation of $|\langle 0^{\otimes n}|C|0^{\otimes n}\rangle|^2$ is #P-hard.

Theorem (Aaronson):

A good approximation of $|\langle 0^{\otimes n} | C | 0^{\otimes n} \rangle|^2$ is #P-hard.

$$T: (x \land \neg y) \lor z$$

Theorem (Aaronson):

A good approximation of $|\langle 0^{\otimes n} | C | 0^{\otimes n} \rangle|^2$ is #P-hard.

Consider a logic term with free variables

$$T: (x \land \neg y) \lor z$$

• P: given an assignment, telling whether the assignment gives a TRUE statement.

Theorem (Aaronson):

A good approximation of $|\langle 0^{\otimes n} | C | 0^{\otimes n} \rangle|^2$ is #P-hard.

$$T: (x \land \neg y) \lor z$$

- P: given an assignment, telling whether the assignment gives a TRUE statement.
- NP-hard: for a given term, telling whether there exists **one** assignment that makes the sentence TRUE.

Theorem (Aaronson):

A good approximation of $|\langle 0^{\otimes n} | C | 0^{\otimes n} \rangle|^2$ is #P-hard.

$$T: (x \land \neg y) \lor z$$

- P: given an assignment, telling whether the assignment gives a TRUE statement.
- NP-hard: for a given term, telling whether there exists **one** assignment that makes the sentence TRUE.
- #P-hard: for a given term, counting how many assignments make the term TRUE.

Theorem (Aaronson):

A good approximation of $|\langle 0^{\otimes n} | C | 0^{\otimes n} \rangle|^2$ is #P-hard.

$$T: (x \land \neg y) \lor z$$

- P: given an assignment, telling whether the assignment gives a TRUE statement.
- NP-hard: for a given term, telling whether there exists **one** assignment that makes the sentence TRUE.
- #P-hard: for a given term, counting how many assignments make the term TRUE.

Merci!